通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下公式:
f(x)=
(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?
(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?
(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?
设动点与两定点,的距离之比为.
⑴ 求动点的轨迹的方程,并说明轨迹是什么;
⑵ 若轨迹与直线只有一个公共点,求的值。
过点P(1,4)作直线l与x轴、y轴正半轴分别交于A、B两点,O为坐标原点,求△AOB面积的最小值及此时直线l的方程.
已知直线l:(2m+1)x+(m+1)y=7m+5,圆C:x2+y2-6x-8y+21=0.
⑴求证:直线l与圆C总相交;
⑵求相交弦的长的最小值及此时m的值.
求经过两条直线2x + y -8= 0和x- 2y +1= 0的交点,且在两坐标轴上的截距相等的直线方程.
从圆(x-1)2+(y-1)2=1外一点P(2,3)向这个圆引切线,求切线的方程。