已知三次函数y = f (x)过点(–1,0),且f ′(x) = (x + 1)2,将y = f (x)的图象向右平移一个单位,再将各点的纵坐标变为原来的3倍得函数y = g (x)的图象,函数y = h (x)与y = g (x)的图象关于点M(2,0)对称.
(1)求y = h (x)的解析式;
(2)若直线x = t (0<t<4)将函数y = h (x)的图象与两坐标轴围成的图形的面积二等分,求t的值.
已知函数f (x) = mx2 – 2x –1(mR).f (x)<0解集为A,集合B = {x | 1<x≤2};若A∩B≠,求实数m的取值范围.
已知y = f (x)是定义在[–1,1]上的奇函数,x∈[0,1]时,f (x) =.
(1)求x∈[–1,0)时,y = f (x)解析式,并求y = f (x)在[0,1]上的最大值.
(2)解不等式f (x)>.
设函数f (x)的定义域为R.若存在正常数M,使|f (x)|≤M|x|对一切实数x均成立,则称f (x)为有界泛函数.在函数:①f (x) = –3x,②f (x) = x2,③f (x) = sin2x,④f (x) = 2x, ⑤f (x) = x cos x中,属于有界泛函数且满足f(x1 +x2) = f (x1)+f(x2)对x1,x2∈R都成立的函数有 .(填上所有正确的序号)
已知函数f (x) = ,直线l:9x + 2y + c = 0,当x∈[–2,2]时,函数y = f (x)图象恒在直线l的下方,则c的取值范围是 .
设函数f (x) =,若f (1) + f (a) = 2,则a的所有可能值是 .