如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2,求直线l的斜率的取值范围.
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型制定奖励方案,试用数学语言表述公司对奖励函数模型的基本要求;
(Ⅱ)现有两个奖励函数模型:(1)y=;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?
设数列的前项和为,如果为常数,则称数列为“科比数列”.
(Ⅰ)已知等差数列的首项为1,公差不为零,若为“科比数列”,求的通项公式;
(Ⅱ)设数列的各项都是正数,前项和为,若对任意 都成立,试推断数列是否为“科比数列”?并说明理由.
在等腰梯形ABCD中,E、F分别是CD、AB中点,CD=2,AB=4,AD=BC=.沿EF将梯形AFED折起,使得∠AFB=60°,如图.
(Ⅰ)若G为FB的中点,求证:AG⊥平面BCEF;
(Ⅱ)求二面角C—AB—F的正切值.
为了参加师大附中第23届田径运动会的开幕式,高三年级某6个班联合到集市购买了6根竹竿,作为班旗的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1(单位:米).
(Ⅰ)若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;
(Ⅱ)若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根a元.从这6根竹竿中随机抽取两根,若期望这两根竹竿的价格之和为18元,求a的值.
己知向量a,b,函数(a·b).
(Ⅰ)求函数f(x)的定义域和值域;
(Ⅱ)求函数f(x)的单调区间.