如图,椭圆C: 的焦点为F1(0,c)、F2(0,一c)(c>0),抛物线的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A、B两点,且
(I)求证:切线l的斜率为定值;
|
(III)当时,求椭圆离心率e的取值范围。
已知数列
(I)求函数的单调区间,
(Ⅱ)设
已知函数
(I)求函数的单调区间;
(II)试说明是否存在实数的图象与直线无公共点,(其中自然对数的底数e为无理数且)
某市为响应国家节能减排,建设资源节约型社会的号召,唤起人们从自己身边的小事做起,开展了以“再小的力量也是一种支持”为主题的宣传教育活动,其中有两则公益广告:
(一)80部手机,一年就会增加一吨二氧化碳的排放。……
(二)人们在享受汽车带来的便捷与舒适的同时,却不得不呼吸汽车排放的尾气。……
活动组织者为了解市民对这两则广告的宣传效果,随机对10~60岁的人群抽样了n人,统计结果如下图表:
(I)分别写出n,a,c,d的值;
(II)若以表中的频率近似看作各年龄组正确回答广告内容的概率,规定正确回答广告一的内容得20元,广告二的内容得30元。组织者随机请一家庭的两成员(大人45岁,孩子17岁)回答两广告内容,求该家庭获得奖金的期望(各人之间,两广告之间,对能否正确回答,均无影响。)
已知P在矩形ABCD边DC上,AB=2,BC=1,F在AB上且DF ⊥AP,垂足为E,将△ADP沿AP折起.使点D位于D′位置,连D′B、D′C得四棱锥D′—ABCP.
(I)求证D′F与AP所成角大小;
(II)若二面角D′—AP—B和D′F与平面ABCP所成角的大小均为,求四棱锥
D′—ABCP的体积。
|
在△ABC中,
(I)求B,
(Ⅱ)若的值。