(本小题为必做题,满分10分)如图,在四棱锥中,底面为矩形,侧棱底面,,,为的中点.
(1) 求直线与所成角的余弦值;
(2) 在侧面内找一点,使面,并求出点
到和的距离.
(选做题)从A,B,C,D四个中选做2个,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤.
A.(本小题为选做题,满分10分)
如图,AB是半圆的直径,C是AB延长线上一点,CD
切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是
OB的中点,求BC的长.
B.(本小题为选做题,满分10分)
已知矩阵,其中,若点P(1,1)在矩阵A的变换下得到点,
(1)求实数a的值; (2)求矩阵A的特征值及特征向量.
C.(本小题为选做题,满分10分)
设点分别是曲线和上的动点,求动点间的最小距离.
D.(本小题为选做题,满分10分)
设为正数,证明:≥.
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
已知函数;.
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以3为上界的有界函数,求实数的取值范围;
(3)若,函数在上的上界是,求的取值范围.
设数列的前n项和为,数列满足: ,且数列的前
n项和为.
(1) 求的值;
(2) 求证:数列是等比数列;
(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.
已知椭圆的左焦点为F,左右顶点分别为A、C,
上顶点为B,过F,B,C三点作,其中圆心P的坐标为.
(1) 若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.
已知
(1)当时,求函数的最小正周期;
(2)当∥时,求的值.