, 若,则 ( )
(A)3 (B)0 (C)-1 (D)-2
设集合, 那么是的( )
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分又不必要条件
如图,在某城市中,两地之间有整齐的方格形道路网,其中、、、是道路网中位于一条对角线上的4个交汇处.今在道路网处的甲、乙两人分别要到处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达为止.
(1)求甲经过到达N的方法有多少种;
(2)求甲、乙两人在处相遇的概率;
(3)求甲、乙两人相遇的概率.
如图,在正方体中,是棱的中点,在棱上.
且,若二面角的余弦值为,求实数的值.
A.选修4-1(几何证明选讲)
如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的交于点,延长交于.(1)求证:是的中点;(2)求线段的长.
B.选修4-2(矩阵与变换)
已知矩阵,若矩阵属于特征值3的一个特征向量为,属于特征值-1的一个特征向量为,求矩阵.
C.选修4-4(坐标系与参数方程)
在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线所截得的弦长.
D.选修4—5(不等式选讲)
已知实数满足,求的最小值;
设函数(),.
(1) 若函数图象上的点到直线距离的最小值为,求的值;
(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3) 对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.