已知数列是等差数列,如果( )
A.4 B.6 C.8 D.10
已知数列是首项为,公差为的等差数列,是首项为,公比为的等比数列,且满足,其中.
(Ⅰ)求的值;
(Ⅱ)若数列与数列有公共项,将所有公共项按原顺序排列后构成一个新数列,求数列的通项公式;
(Ⅲ)记(Ⅱ)中数列的前n项之和为,求证:
.
16.
) 已知函数。
(Ⅰ)求函数的单调区间,并比较、、的大小;
(II)证明:在其定义域内恒成立,并比较与的大小。
在直角坐标系xOy中,椭圆C1:的左、右焦点分别为F1、F2.其中F2也是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且.
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A、B两点,若·=0,求直线l的方程.
如图所示,棱柱的所有棱长都等于2,,平面AA1C1C⊥ABCD,∠A1AC=60°.
(I)证明:BD⊥AA1.
(II)求二面角D―A1A―C的平面角的余弦值.
(III)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,试说明理由.
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(I)若某位顾客消费128元,求返券金额不低于30元的概率;
(II)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望。