在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为
|
0 |
2 |
3 |
4 |
5 |
p |
0.03 |
P1 |
P2 |
P3 |
P4 |
(1)求q的值;
(2)求随机变量的数学期望E;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
(10分)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客.在省外游客中有持金卡,在省内游客中有持银卡.
(1)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(2)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望.
(8分)两个人射击,甲,乙各射击一次中靶的概率分别是是关于的方程的两个根,若两人各射击5次,甲射击5次中靶的期望是2.5.
(1)求p1、p2的值;
(2)两人各射击2次,中靶至少3次就算完成目的,则完成目的的概率是多少?
(8分)一个机器由于使用时间较长,生产的零件有一些会有缺损,按不同转速生产出来的零件有缺损的统计数据如下:
转速(转/秒) 16 14 12 8
每小时生产有缺损的零件数(件) 11 9 8 5
(1)y与x线性相关,求相应线性回归直线方程.
(2)据(1)的结果估计当转速为15转/秒时,有缺损的零件数是多少?
(参考公式:)
若的展开式中的系数是80.
(1)实数的值;
(2)二项式系数最大项是哪一项并写出来?
已知z、w为复数,(1+3i)·z为实数,w=且,求w.