已知函数
(I)求数列的通项公式;
(II)若数列
某地区举行环保知识大赛,比赛分初赛和决赛两部分,初赛采用选用选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题直接进入决赛,答错3次者则被淘汰,已知选手甲连续两次
答错的概率为(已知甲回答每个问题的正确率相同,且相互之间没有影响)
(I)求甲选手回答一个问题的正确率;
(II)求选手甲进入决赛的概率;
(III)设选手甲在初赛中的答题的个数为并求出的数学期望。
如图,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点。
(I)证明:PQ//平面ACD;
(II)求异面直线AE与BC所成角的余弦值;
(III)求平面ACD与平面ABE所成锐二面角的大小。
若向量,在函数
的图象中,对称中心到对称轴的最小距离为且当的最大值为1。
(I)求函数的解析式;
(II)求函数的单调递增区间。
由曲线所围成的图形的面积的最小值是 。
等差数列的最大值是 。