平面上有n(n≥2)个圆,其中每两个圆都相交于两点,任何三个圆无公共点.这n个圆将平面分成块区域,可数得,则的表达式为
现将一个质点随即投入区域中,则质点落在区域内的概率是
设函数,若,则的取值范围是
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线的斜率的取值范围是
已知数列的前n项和,则此数列奇数项的前n项和为
A. B. C. D.
右图是一个几何体的平面展开图,其中ABCD为
正方形, E、F分别为PA、PD的中点,在此几何体中,
给出下面四个结论:
①直线BE与直线CF异面;②直线BE与直线AF异面;
③直线EF//平面PBC; ④平面BCE⊥平面PAD.
其中正确结论的个数是
A.1个 B.2个 C.3个 D.4个