某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为万元(m>0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.
(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;
(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?
如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点F在DE上,且AF⊥DE,若圆柱的侧面积与△ABE的面积之比等于4π. 007
(Ⅰ)求证:AF⊥BD;
(Ⅱ)求二面角A―BD―E的正弦值.
某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
⑴求分数在[70,80)内的频率,并补全这个频率分布直方图;
⑵统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
⑶若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望。
已知函数f(x)=sinx+cosx,f `(x)是f(x)的导函数。
⑴ 求函数F(x)=f(x)f`(x)+[f(x)]2的最大值和最小正周期;
⑵ 若f(x)=2f`(x),求的值。
某资料室在计算机使用中,如下表所示以一定规则排列的编码,且从左至右以及从上到下都是无限的,此表中,主对角线上数列1,2,5,10,17,…的通项公式为 ,编码100共出现 次。
已知点O在△ABC内部,且满足,向△ABC内任抛一点M,则点M落在△AOC内的概率为 。