如图,已知圆是椭圆的内接△的内切圆, 其中为椭圆的左顶点.
(1)求圆的半径;
(2)过点作圆的两条切线交椭圆于两点,
|
|
|
|
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?
若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的双曲线的一条准线方程为,离心率.
(Ⅰ)求该双曲线的方程;
(Ⅱ)如图,点的坐标为,是圆上的点,点在双曲线右支上,求的最小值,并求此时点的坐标;
若抛物线的焦点与双曲线的右焦点重合,则的值为 .
已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为