[番茄花园1] 动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间时,点的坐标是,则当时,动点的坐标关于(单位:秒)的函数的单调递增区间是
A. B. C. D.和
[番茄花园1]9.
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
已知函数
(1)当恒成立,求实数m的最大值;
(2)在曲线上存在两点关于直线对称,求t的取值范围;
(3)在直线的两条切线l1、l2,求证:l1⊥l2
已知动圆过定点,且与直线相切.
(1) 求动圆的圆心轨迹的方程;
(2) 是否存在直线,使过点,并与轨迹交于两点,
且满足?若存在,求出直线的方程;若不存在,说明理由.
已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程.
在长方体ABCD-A1B1C1D1中,B1 C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为 ( )
A. B. C. D.