如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小。
已知函数。
(Ⅰ)求的值;
(Ⅱ)求的最大值和最小值。
如图放置的边长为1的正方形PABC沿轴滚动。
设顶点P(,y)的轨迹方程是,则的最小正周期为 ;在其两个相邻零点间的图像与轴
所围区域的面积为 。
说明:“正方形PABC沿轴滚动”包括沿轴正方向和沿轴负方向滚动。沿轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在轴上时,再以顶点B为中心顺时针旋转,如此继续。类似地,正方形PABC可以沿轴负方向滚动。
已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。
解析:双曲线焦点即为椭圆焦点,不难算出为,又双曲线离心率为2,即,故,渐近线为
如图,的弦ED,CB的延长线交于点A。若BDAE,AB=4, BC=2, AD=3,则DE= ;CE= 。
从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a= 。若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 。