选修4—4;坐标系与参数方程
已知直线: (t为参数),圆: (为参数),
(Ⅰ)当=时,求与的交点坐标;
(Ⅱ)过坐标原点O作的垂线,垂足为A,P为OA的中点,当变化时,求P点轨迹的参数方程,并指出它是什么曲线;
选修4—1;几何证明选讲
如图,已知圆上的弧=,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)=;
(Ⅱ);
设函数f(x)=.
(Ⅰ)若a=0,求f(x)的单调区间;
(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.
设分别是椭圆E:(a>b>0)的左、右焦点,过斜率为1的直线l与E 相较于A,B两点,且,,成等差数列.
(Ⅰ)求E的离心率;
(Ⅱ)设点P(0,-1)满足,求E的方程.
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(Ⅱ)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
如圈,己知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,⊥BD垂足为H,PH是四棱锥的高,E为AD中点.
(Ⅰ)证明:PE⊥BC
(Ⅱ)若==60°,求直线PA与平面PEH所成角的正弦值.