如图,在四面体ABOC中,OC⊥OA。OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)设P为AC的中点,Q在AB上且AB=3AQ,证明:PQ⊥OA;
(Ⅱ)求二面角O-AC-B的平面角的余弦值。
为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)
(Ⅰ)在答题卡上的表格中填写相应的频率;
(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;
(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。
已经函数
(Ⅰ)函数的图象可由函数的图象经过怎样变化得出?
(Ⅱ)求函数的最小值,并求使用取得最小值的的集合。
已知椭圆的两焦点为,点满足,则||+|的取值范围为_______,直线与椭圆C的公共点个数_____。
圆柱形容器内盛有高度为3cm的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是____cm.
一个病人服用某种新药后被治愈的概率为0.9.则服用这咱新药的4个病人中至少3人被治愈的概率为_______(用数字作答)。