某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
100×(0.001+0.001+0.004)×5=30
盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.
设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.
设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲_____.
设函数,其中a>0,曲线在点P(0,)处的切线方程为y=1
(Ⅰ)确定b、c的值
(Ⅱ)设曲线在点()及()处的切线都过点(0,2)证明:当时,
(Ⅲ)若过点(0,2)可作曲线的三条不同切线,求a的取值范围。
已知一条曲线C在y轴右边,C上没一点到点F(1,0)的距离减去它到y轴距离的差都是1。
(Ⅰ)求曲线C的方程
(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由。