[番茄花园1] 选修4—4:坐标系与参数方程
X=
y=
y=tsina
X=1+tcosa
(Ⅰ)当a=时,求与的交点坐标:
(Ⅱ)过坐标原点O做的垂线,垂足为A、P为OA的中点,当a变化时,
[番茄花园1]1.
[番茄花园1] 选修4—1:几何证明选讲
如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于
E点,证明:
(Ⅰ)=。
(Ⅱ)=BE x CD。
[番茄花园1]
设函数
(Ⅰ)若a=,求的单调区间;
(Ⅱ)若当≥0时≥0,求a的取值范围
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。
(Ⅰ)求
(Ⅱ)若直线的斜率为1,求b的值。
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:
如图,已知四棱锥的底面为等腰梯形,∥,,垂足为,是四棱锥的高。
(Ⅰ)证明:平面 平面;
(Ⅱ)若,60°,求四棱锥的体积。
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目的题号涂黑。