已知椭圆C的左、右焦点坐标分别是,,离心率是,直线与椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P。
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当变化时,求y的最大值。
设定函数,且方程的两个根分别为1,4。
(Ⅰ)当a=3且曲线过原点时,求的解析式;
(Ⅱ)若在无极值点,求a的取值范围。
如图,正方形ABCD和四边形ACEF所在的平面互
相垂直。EF//AC,AB=,CE=EF=1
(Ⅰ)求证:AF//平面BDE;
(Ⅱ)求证:CF⊥平面BDF;
已知为等差数列,且,。
(Ⅰ)求的通项公式;
(Ⅱ)若等差数列满足,,求的前n项和公式
已知函数
(Ⅰ)求的值; (Ⅱ)求的最大值和最小值
如图放置的边长为1的正方形PABC沿x轴滚动。
设顶点p(x,y)的纵坐标与横坐标的函数关系是
,则的最小正周期为 ;
在其两个相邻零点间的图像与x轴
所围区域的面积为 。
说明:“正方形PABC沿x轴滚动”包含沿x轴正方向
和沿x轴负方向滚动。沿x轴正方向滚动是指以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿着x轴负方向滚动。