某营养师要为某个儿童预订午餐和晚餐. 已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C. 另外,该儿童两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.
如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
|
|||
|
|||
|
(1)证明:EB⊥FD;
(2)已知点Q,R分别为线段FE,FB上的点,使得BQ=,
,求平面BED与平面RQD所成二面角的正弦值.
某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,495,(495,500,…(510,515,由此得到样本的频率分布直方图,如图4所示.
(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.
(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.
已知函数时取得最大值4.
(1)求的最小正周期;
(2)求的解析式;
(3)若.
(坐标系与参数方程选做题)在极坐标系()(中,曲线的交点的极坐标为 .
(几何证明选讲选做题)如图3,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=,则CP= .