已知向量a,b满足,则
A.0 B. C. 4 D.8
在等比数列中, ,则公比q的值为
A.2 B.3 C.4 D.8
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知椭圆的方程为,、和为的三个顶点.
(1)若点满足,求点的坐标;
(2)设直线交椭圆于、两点,交直线于点.若,证明:为的中点;
(3)设点在椭圆内且不在轴上,如何构作过中点的直线,使得与椭圆 的两个交点、满足?令,,点的坐标是(-8,-1),若椭圆上的点、满足,求点、的坐标.
本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.
若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
本题共有2个小题,第一个小题满分6分,第2个小题满分8分.
已知数列的前项和为,且,
(1)证明:是等比数列;
(2)求数列的通项公式,并求出使得成立的最小正整数.
本题共有2个小题,第1小题满分7分,第2小题满分7分.
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径取何值时,取得最大值?并求出该最大值(结果精确到0.01平方米);
|