已知函数,且函数的图象关于原点
对称,其图象在x=3处的切线方程为
(1)求的解析式;
(2)是否存在区间[m,n],使得函数的定义域和值域均为[m,n],且其解析式为 的解析式?若存在,求出这样一个区间[m,n];若不存在,则说明理由.
双曲线,一焦点到其相应准线的距离为,过点A(0,-b),B(a,0)的直线与原点的距离为
(1)求该双曲线的方程
(2)是否存在直线与双曲线交于相异两点C,D,使得C,D两点都在以A为圆心的同一个圆上,若存在,求出直线方程;若不存在说明理由.
|
(I)求证:AC1⊥平面A1BC;
(II)求CC1到平面A1AB的距离;
(理)(III)求二面角A—A1B—C的大小
设
(1)求从A中任取一个元素是(1,2)的概率;
(2)从A中任取一个元素,求的概率
(理)(3)设为随机变量,
(2)设从A中任取一个元素,的事件为C,有
(4,6)(6,4)(5,5)(5,6)(6,5)(6,6)
某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管等其它费用为平均每吨每天3元,购面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
已知不等式的解集为A,不等式的解集为B,
(1)求
(2)若不等式的解集是,求的解集.