已知数列满足,且()。
(1) 求、、的值;
(2) 猜想数列的通项公式,并用数学归纳法加以证明。
已知投资某项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是.设该项目产品价格在一年内进行2次独立的调整,记产品价格在一年内的下降次数为,对该项目每投资十万元,取0、1、2时,一年后相应的利润为1.6万元、2万元、2.4万元.求投资该项目十万元,一年后获得利润的数学期望及方差.
某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:
(1)抽到他能答对题目数的分布列;
(2)他能通过初试的概率。
以下四个命题:
①;
②
③凸n边形内角和为
④凸n边形对角线的条数是
其中满足“假设时命题成立,则当n=k+1时命题也成立’’.但不满足“当(是题中给定的n的初始值)时命题成立”的命题序号是 .
|
两数均为;②表中的递推关系类似杨辉三角
(三角形数阵中的数为其肩上两数之和),则
第行(第2个数是 .
从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽一张,已知第一次抽到A,则第二次也抽到A的概率为 .