设函数定义在上,,导函数,.
(1)求的单调区间和最小值;
(2)讨论与的大小关系;
(3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.
如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:
时间(分钟) |
1020 |
2030 |
3040 |
4050 |
5060 |
的频率 |
|
|
|
|
|
的频率 |
0 |
|
|
|
|
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 .
如图,从点P1(0,0)作轴的垂线交曲线于点,曲线在点处的切线与轴交于点.再从做轴的垂线交曲线于点,依次重复上述过程得到一系列点:;;…;,记点的坐标为().
(1)试求与的关系();
(2)求.
叙述并证明余弦定理.
如图,设P是圆上的动点,点D是P在轴上投影,
M为PD上一点,且.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.
如图,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC.
(1)证明:平面ADB⊥平面BDC;
(2)设E为BC的中点,求与夹角的余弦值.