(本小题共l4分)
已知函数
(I)设函数,求的单调区间与极值;
(Ⅱ)设,解关于的方程
(Ⅲ)试比较与的大小.
(本小题共l2分)
椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.
(I)当|CD | = 时,求直线l的方程;
(II)当点P异于A、B两点时,求证: 为定值。
设为非零实数,
(1)写出并判断是否为等比数列。若是,给出证明;若不是,说明理由;
(II)设,求数列的前n项和.
(本小题共l2分)
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。
(Ⅰ)求出甲、乙所付租车费用相同的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;
已知函数
(1)求的最小正周期和最小值;
(2)已知,求证: