如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;
(2 )设BD=1,求三棱锥D—ABC的表面积。
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式对任意R恒成立,则的取值范围是 .
B.(几何证明选做题)如图,∠B=∠D,,,且AB=6,AC=4,AD=12,则AE= .
C.(坐标系与参数方程选做题)直角坐标系中,以原点O为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线:(为参数)和曲线:上,则的最小值为 .
设,一元二次方程有整数根的充要条件是 .
观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第五个等式应为__________________.
如图,点在四边形ABCD内部和边界上运动,那么的最小值为________.
设,则______.