设纯虚数z满足 (其中i为虚数单位),则实数a等于
(A) 1 (B) -1 (C) 2 (D) -2
若集合,,全集U=R,则下列结论正确的是
(A) (B)
(C) (D)
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别 是否需要志愿者 |
男 |
女 |
需要 |
40 |
30 |
不需要 |
160 |
270 |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
|
|
|
|
|
|
|
|
附:独立性检验随机变量值的计算公式:
统计学已经得到的几个临界值:如果,我们就没有理由认为事件与有关;如果,我们就有的把握说事件与有关;如果,我们就有的把握说事件与有关;如果,我们就有的把握说事件与有关。
一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球.(Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;(Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.
甲,乙,丙三个同学同时报名参加某重点高校2011年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关才能参加文化测试,文化测试合格者即可获得自主招生入选资格,因为甲,乙,丙三人各有优势,甲,乙,丙三人审核过关的概率分别为0.5,0.6,0.4,审核过关后,甲,乙,丙三人文化测试合格的概率分别为0.6,0.5,0.75.(1)求甲,乙,丙三人中只有一人通过审核的概率;(2)设甲,乙,丙三人中获得自主招生入选资格的人数为ξ,求随机变量ξ的分布列、数学期望和方差。
某商场经销某商品,根据以往资料统计,顾客采用的付款期数 的分布列为
|
1 |
2 |
3 |
4 |
5 |
|
0.4 |
0.2 |
0.2 |
0.1 |
0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(1)求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;
(2)求的分布列及期望.