设集合,,那么点的充要条件是 ( )
A. B. C. D.
函数在处的导数等于( )
A.1 B.2 C.3 D.4
已知函数.
(Ⅰ)若函数在区间(其中)上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数k的取值范围;
(Ⅲ)求证.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;
(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于,两点,求的取值范围.
已知数列满足,.
(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)求数列的通项公式.
如图,三棱柱中,侧面底面,,
且,O为中点.
(Ⅰ)证明:平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.