已知等10所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为.
(Ⅰ)如果该同学10所高校的考试都参加,试求恰有2所通过的概率;
(Ⅱ)假设该同学参加每所高校考试所需的费用均为元,该同学决定按顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,试求该同学参加考试所需费用的分布列及数学期望.
将边长为1的正三角形按如图所示的方式放置,其中顶点与坐标原点重合.记边所在直线的倾斜角为,已知.
(Ⅰ)试用表示的坐标(要求将结果化简为形如的形式);
(Ⅱ)定义:对于直角坐标平面内的任意两点、,称为、两点间的“taxi距离” ,并用符号表示.试求的最大值.
已知点,直线,动点到点的距离等于它到直线的距离.
(Ⅰ)试判断点的轨迹的形状,并写出其方程.
(Ⅱ)是否存在过的直线,使得直线被截得的弦恰好被点所平分?
数学与文学之间存在着许多奇妙的联系. 诗中有回文诗,如:“云边月影沙边雁,水外天光山外树”,倒过来读,便是“树外山光天外水,雁边沙影月边云”,其意境和韵味读来真是一种享受!数学中也有回文数,如:88,454,7337,43534等都是回文数,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”,读起来还真有趣!
二位的回文数有11,22,33,44,55,66,77,88,99,共9个;
三位的回文数有101,111,121,131,…,969,979,989,999,共90个;
四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;
由此推测:10位的回文数总共有 个.
已知,设,则由函数的图象与轴、直线所围成的封闭图形的面积为 .
在中,,则周长的最大值为 .