如图:O方程为,点P在圆上,点D在x轴上,点M在DP延长线上,O交y轴于点N,.且
(I)求点M的轨迹C的方程;
(II)设,若过F1的直线交(I)中
曲线C于A、B两点,求的取值范围.
一个四棱椎的三视图如图所示:
(I)求证:PA⊥BD;
(II)在线段PD上是否存在一点Q,
使二面角Q-AC-D的平面角为
30o?若存在,求的值;若不存在,说明理由.
形状如图所示的三个游戏盘中(图(1)是正方形,M、N分别是所在边中点,图(2)是半径分别为2和4的两个同心圆,O为圆心,图(3)是正六边形,点P为其中心)各有一个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏.
(I)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?
(II)用随机变量表示一局游戏后,小球停在阴影部分的事件数与小球没有停在阴影部分的事件数之差的绝对值,求随机变量的分布列及数学期望.
|
已知函数的图象的一部分如下图所示.
(I)求函数的解析式;
(II)求函数的最大值与最小值.
(考生注意:本题为选做题,请在下列两题中任选一题作答,如果都做,则按所做第(1)题计分)
(1)(《几何证明选讲》选做题).如图:直角三角形ABC中,
∠B=90 o,AB=4,以BC为直径的圆交边AC于点D,
AD=2,则∠C的大小为 ▲ .
(2)(《坐标系与参数方程选讲》选做题).已知直线的极坐标方程
为,则点到这条直线的距离
为 ▲ .
如图所示:有三根针和套在一根针上的n个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在
较小的金属片上面.将n个金属片从1号针移到3
号针最少需要移动的次数记为;
则:(Ⅰ) ▲ (Ⅱ) ▲