选修4-4:坐标系与参数方程
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
⑴求圆C的极坐标方程;
⑵是圆上一动点,点满足,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
选修4-1:几何证明选讲
如图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(I)求AC的长;
(II)求证:BE=EF.
设函数.
(Ⅰ)求的单调区间和极值;
(Ⅱ)是否存在实数,使得关于的不等式的解集为?若存在,求的取值范围;若不存在,试说明理由.
|
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。
如图,在底面为直角梯形的四棱锥中,平面,,,.
⑴求证:;
⑵求直线与平面所成的角;
⑶设点在棱上,,
若∥平面,求的值.
|
符合下列三个条件之一,某名牌大学就可录取:
①获国家高中数学联赛一等奖(保送录取,联赛一等奖从省高中数学竞赛优胜者中考试选拔);
②自主招生考试通过并且高考分数达到一本分数线(只有省高中数学竞赛优胜者才具备自主招生考试资格);③高考分数达到该大学录取分数线(该大学录取分数线高于一本分数线).
某高中一名高二数学尖子生准备报考该大学,他计划:若获国家高中数学联赛一等奖,则保送录取;若未被保送录取,则再按条件②、条件③的顺序依次参加考试.
已知这名同学获省高中数学竞赛优胜奖的概率是0.9,通过联赛一等奖选拔考试的概率是0.5,通过自主招生考试的概率是0.8,高考分数达到一本分数线的概率是0.6,高考分数达到该大学录取分数线的概率是0.3.
(I)求这名同学参加考试次数的分布列及数学期望;
(II)求这名同学被该大学录取的概率.