选修4-4:坐标系与参数方程
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
⑴求圆C的极坐标方程;
⑵是圆上一动点,点满足,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
选修4-1:几何证明选讲
如图,D,E分别为的边AB,AC上的点,且不与的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程的两个根.
(I)证明:C,B,D,E四点共圆;
(II)若,且求C,B,D,E所在圆的半径.
|
已知函数.(参考:)
(1)当且,时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足|x|≥2的实数x有≥0.
①求的表达式;
②当时,求函数的图象与函数的图象的交点坐标.
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。
如图,三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM//平面APC;
(2)求 证:平面ABC⊥平面APC;
|
设函数是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求恒成立的概率。