复数的虚部是 ( )
A.-1 B.-i C.1 D.i
已知函数f(x)=(m,n∈R)在x=1处取到极值2.
(1)求f(x)的解析式;
(2)设函数g(x)=ax-lnx.若对任意的x1∈[,2],总存在唯一的x2∈[,e](e为自然对数的底),使得g(x2)=f(x1),求实数a的取值范围.
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为.点P(1,)、A、B在椭圆E上,且+=m(m∈R).
(1)求椭圆E的方程及直线AB的斜率;
(2)求证:当△PAB的面积取得最大值时,原点O是△PAB的重心.
如图,已知E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA,NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是线段PA上的一动点.
(1)求证:平面PAC⊥平面NEF;
(2)若PC∥ 平面MEF,试求PM∶MA的值;
(3)当M的是PA中点时,求二面角M-EF-N的余弦值.
南昌市教育局组织中学生足球比赛,共有实力相当的8支代表队(含有一中代表队,二中代表队)参加比赛,比赛规则如下:
第一轮:抽签分成四组,每组两队进行比赛,胜队进入第二轮,第二轮:将四队分成两组,每组两队进行比赛,胜队进入第三轮,第三轮:两队进行决赛,胜队获得冠军。
现记ξ=0表示整个比赛中一中代表队与二中代表队没有相遇,ξ=i表示恰好在第i轮比赛时一中代表队,二中代表队相遇(i=1,2,3).
(1)求ξ的分布列;
(2)求Eξ.
已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列{}的前n项和,若Tn≤λan+1对∀n∈N*恒成立,求实数λ的最小值.