已知抛物线x2=2py(p>0)与双曲线-=1(a>0, b>0)有相同的焦点F,点B是两曲线的一个交点,且BF⊥y轴,若L为双曲线的一条渐近线,则L的倾斜角所在的区间可能是 ( )
A.(,) B.(,) C.(,) D.(,π)
给出以下四个命题:
①“”是“”的充分不必要条件
②若命题:“,使得”,则:“,均有”
③如果实数满足,则的最大值为21
④在中,若,则3:2:1
其中真命题的个数为 ( )
A.1 B.2 C.3 D.4
已知上是增函数,在[0,2]上是减函数,且方程有三个根,它们分别为.
(1)求c的值;
(2)求证;
(3)求的取值范围.
已知等差数列{an}的首项a1 =4, 且a2+a7+a12=-6.
(1)求数列{an}的通项公式an与前n项和Sn;
(2)将数列{an}的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前三项,记{bn}的前n项和为Tn, 若存在m∈N+, 使对任意n∈N+总有Tn<Sm+λ恒成立, 求实数λ的最小值.
已知椭圆的左右焦点为F1,F2,离心率为,以线段F1 F2为直径的圆的面积为,
(1)求椭圆的方程;
(2) 设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.
如图:、是以为直径的圆上两点,,, 是上一点,且,将圆沿直径折起,使点在平面的射影在上.
(1)求证:平面;
(2)求证:平面;
(3)求三棱锥的体积.