抛物线的焦点坐标为( ▲ )
A. B. C. D.
已知椭圆的离心率为,为椭圆的左右焦点,;分别为椭圆的长轴和短轴的端点(如图) . 若四边形的面积为.
(Ⅰ)求椭圆的方程.
(Ⅱ)抛物线的焦点与椭圆的右焦点重合,过点任意作一条直线,交抛物线于两点. 证明:以为直径的所有圆是否过抛物线上一定点.
已知函数,,.
(Ⅰ)当,求使恒成立的的取值范围;
(Ⅱ)设方程的两根为(),且函数在区间上的最大值与最小值之差是8,求的值.
数列满足.
(Ⅰ)若是等差数列,求其通项公式;
(Ⅱ)若满足,为的前项和,求.
已知三棱柱,底面为正三角形,平面,,为中点.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
在中,角所对的边分别为,且成等差数列.
(Ⅰ)求角的大小; (Ⅱ)若,求边上中线长的最小值.