已知点P是双曲线右支上一点,,分别是双曲线的左、右焦点,I为的内心,若 成立,则双曲线的离心率为( )
A.4 B. C.2 D.
如图,正方体的棱长为1,线段上有两个动点E,F,且,则下列结论中错误的是 ( )
A.
B.
C.三棱锥的体积为定值
D.异面直线所成的角为定值
已知数列的通项公式,其前n项和,则项数n=
A.17 B.18 C.19 D.20
已知函数,是的一个极值点.
(Ⅰ)求的单调递增区间;
(Ⅱ)当时,求方程的解的个数.
已知椭圆的两焦点为,,离心率.
(1)求此椭圆的方程;
(2)设直线,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
如图,在底面为矩形的四棱锥中,平面,,是的中点.
(1)求证://平面;
(2)求证:;
(3)是否存在正实数使得平面平面?
若存在,求出的值;若不存在,请说明理由.