已知函数,
(Ⅰ)当时,求函数的单调递增区间;
(Ⅱ)在区间内至少存在一个实数,使得成立,求实数的取值范围.
设椭圆: 的离心率为,点(,0),(0,)原点到直线的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为(,0),点在椭圆上(与、均不重合),点在直线上,若直线的方程为,且,试求直线的方程.
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5。同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和。
(Ⅰ)求事件“m不小于6”的概率;
(Ⅱ)“m为奇数”的概率和“m为偶数”的概率是不是相等?证明你作出的结论。
如图,是底部不可到达的一个塔型建筑物,为塔的最高点.现需在塔对岸测出塔高,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底在同一水平面内的一条基线,使不在同一条直线上,测出及的大小(分别用表示测得的数据)以及间的距离(用表示测得的数据),另外需在点测得塔顶的仰角(用表示测量的数据),就可以求得塔高.乙同学的方法是:选一条水平基线,使三点在同一条直线上.在处分别测得塔顶的仰角(分别用表示测得的数据)以及间的距离(用表示测得的数据),就可以求得塔高.请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时按顺时针方向标注,按从左到右的方向标注;③求塔高.
某中学为了解学生的数学学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图.根据频率分布直方图,推测这3000名学生在该次数学考试中成绩小于60分的学生数是________.