设,且恒成立,则的最大值是( )
A. B. C. D.
已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,则( ).
A. B.
C. D.
已知函数满足:x≥4,则=;当x<4时=,则
=
A. B. C. D.
设集合则
A. B. C.. D.
已知抛物线直线过抛物线的焦点且与该抛物线交于、两点(点A在第一象限)
(Ⅰ)若,求直线的方程;
(Ⅱ)过点的抛物线的切线与直线交于点,求证:。
【解析】本试题主要是考查了直线与抛物线的位置关系,利用联立方程组,结合韦达定理求解弦长和直线的方程,以及证明垂直问题。
已知椭圆+=1(a>b>0)上的点M (1, )到它的两焦点F1,F2的距离之和为4,A、B分别是它的左顶点和上顶点。
(Ⅰ)求此椭圆的方程及离心率;
(Ⅱ)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程。
【解析】本试题主要是考查椭圆的方程和椭圆的几何性质,以及直线与椭圆的位置关系的综合运用。联立方程组,结合韦达定理求解和运算。