(本小题满分12分)
已知0<a<的最小正周期,求.
在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号).
①矩形;
②不是矩形的平行四边形;
③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;
④每个面都是等边三角形的四面体;
⑤每个面都是直角三角形的四面体.
如图,抛物线y=-x2+1与x轴的正半轴交于点A,将线段OA的n等分点从左至右依次记为P1,P2,…,Pn-1,过这些分点分别作x轴的垂线,与抛物线的交点依次为Q1,Q2,…,Qn-1,从而得到n-1个直角三角形△Q1OP1, △Q2P1P2,…, △Qn-1Pn-1Pn-1,当n→∞时,这些三角形的面积之和的极限为 .
在四面体O-ABC中,为BC的中点,E为AD的中点,则= (用表示).
若(2x3+)n的展开式中含有常数项,则最小的正整数n等于 .
定义在R上的函数既是奇函数,又是周期函数,是它的一个正周期.若将方程在闭区间上的根的个数记为,则可能为
(A)0 (B)1 (C)3 (D)5