(本小题满分12分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.
(本小题满分12分)
已知函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在区间上的最小值和最大值.
如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).
如图,在中,,是边上一点,,则 .
已知两圆和相交于两点,则直线的方程是 .
设等差数列的公差是2,前项的和为,则 .