(本小题满分13分)
已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是.
(I)证明,为常数;
(II)若动点满足(其中为坐标原点),求点的轨迹方程.
(本小题满分12分)
如图3,已知直二面角,,,,,,直线和平面所成的角为.
(I)证明;
(II)求二面角的大小.
(本小题满分12分)
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.
(本小题满分12分)
已知函数.求:
(I)函数的最小正周期;
(II)函数的单调增区间.
棱长为1的正方体的8个顶点都在球的表面上,则球的表面积是 ;设分别是该正方体的棱,的中点,则直线被球截得的线段长为 .
设集合,,,
(1)的取值范围是 ;
(2)若,且的最大值为9,则的值是 .