已知函数的定义域为M,g(x)=的定义域为N,则M∩N=
(A) (B) (C) (D)
(本小题满分13分)
已知函数在区间,内各有一个极值点.
(I)求的最大值;
(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式.
(本小题满分13分)
设是数列()的前项和,,且,,.
(I)证明:数列()是常数数列;
(II)试找出一个奇数,使以18为首项,7为公比的等比数列()中的所有项都是数列中的项,并指出是数列中的第几项.
(本小题满分13分)
已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是.
(I)证明,为常数;
(II)若动点满足(其中为坐标原点),求点的轨迹方程.
(本小题满分12分)
如图3,已知直二面角,,,,,,直线和平面所成的角为.
(I)证明;
(II)求二面角的大小.
(本小题满分12分)
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.