已知半椭圆与半椭圆组成的曲线称为“果圆”,其中。如图,设点,,是相应椭圆的焦点,,和,是“果圆” 与,轴的交点,
(1)若三角形是边长为1的等边三角形,求“果圆”的方程;
(2)若,求的取值范围;
(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦。是否存在实数,使得斜率为的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有的值;若不存在,说明理由。
若有穷数列(是正整数),满足即
(是正整数,且),就称该数列为“对称数列”。
(1)已知数列是项数为7的对称数列,且成等差数列,,试写出的每一项
(2)已知是项数为的对称数列,且构成首项为50,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?
(3)对于给定的正整数,试写出所有项数不超过的对称数列,使得成为数列中的连续项;当时,试求其中一个数列的前2008项和
已知函数
(1)判断的奇偶性 (2)若在是增函数,求实数的范围
近年来,太阳能技术运用的步伐日益加快,已知2002年全球太阳能年生产量为670兆瓦,年增长率为34%。在此后的四年里,增长率以每年2%的速度增长(例如2003年的年生产量增长率为36%)
(1)求2006年的太阳能年生产量(精确到0.1兆瓦)
(2)已知2006年太阳能年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)
在三角形中,,求三角形的面积。
体积为1的直三棱柱中,,,求直线与平面所成角。