(本小题满分14分)设函数,其中.
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数,不等式都成立.
(本小题满分12分)已知椭圆C的中心在坐标原点,焦点在轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1.
(I)求椭圆C的标准方程;
(II)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线过定点,并求出该定点的坐标.
(本小题满分12分)如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西的方向处,此时两船相距20海里.当甲船航行20分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
(本小题满分12分)如图,在直四棱柱中,已知
,,.
(I)设是的中点,求证: ;
(II)求二面角的余弦值.
(本小题满分12分)设分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).
(I)求方程 有实根的概率;
(II) 求的分布列和数学期望;
(III)求在先后两次出现的点数中有5的条件下,方程 有实根的概率.
(本小题满分12分)设数列满足
(I)求数列的通项; (II)设求数列的前项和.