(本小题满分10分)选修4-1:几何证明选讲
如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B、C两点,圆心O在的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.
(本小题满分12分)
设函数.
(Ⅰ)若当时取得极值,求a的值,并讨论的单调性;
(Ⅱ)若存在极值,求a的取值范围,并证明所有极值之和大于.
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。
(本小题满分12分)
如图,面积为的正方形中有一个不规则的图形M,可按下面方法估计M的面积:在正方形中随机投掷个点,若个点中有个点落入M中,则M的面积的估计值为. 假设正方形的边长为2,M的面积为1,并向正方形中随机投掷10 000个点,以表示落入M中的点的数目.
(Ⅰ)求的均值;
(Ⅱ)求用以上方法估计M的面积时,M的面积的估计值与实际值之差在区间内的概率.
附表:
2424 |
2425 |
2574 |
2575 |
|
0.0403 |
0.0423 |
0.9570 |
0.9590 |
(本小题满分12分)
在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.
(本小题满分12分)
如图,在三棱锥中, 侧面与侧面均为等边三角形, 为中点.
(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.
(本小题满分12分)
如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D. 现测得,,,并在点C测得塔顶A的仰角为,求塔高.