(本小题满分12分)
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)
(本小题满分12分)
设函数f(x)=a-b,其中向量a=(m,cos2x),b=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点,
(Ⅰ)求实数m的值;
(Ⅱ)求函数f(x)的最小值及此时x的值的集合.
安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)
如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为 .
已知实数x、y满足条件,则z=x+2y的最大值为 .
.