(本小题满分14分)
已知数列的首项,,.
(Ⅰ)求的通项公式;
(Ⅱ)证明:对任意的,,;
(Ⅲ)证明:.
(本小题满分12分)
已知函数(且,)恰有一个极大值点和一个极小值点,其中一个是.
(Ⅰ)求函数的另一个极值点;
(Ⅱ)求函数的极大值和极小值,并求时的取值范围.
(本小题满分12分)
已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点.
(Ⅰ)证明:抛物线在点处的切线与平行;
(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.
(本小题满分12分)
三棱锥被平行于底面的平面所截得的几何体如图所示,截面为,,平面,,,,,.
(Ⅰ)证明:平面平面;
(Ⅱ)求二面角的大小.
(本小题满分12分)
某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.
(Ⅰ)求该射手恰好射击两次的概率;
(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.
(本小题满分12分)
已知函数.
(Ⅰ)求函数的最小正周期及最值;
(Ⅱ)令,判断函数的奇偶性,并说明理由.