(本小题满分14分) 设向量
(1)若与垂直,求的值;(2)求的最大值;
(3)若,求证:∥. www.7caiedu.cn
在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列。
⑴求点的坐标;
⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与数列相切于的直线的斜率为,求:。
⑶设,等差数列的任一项,其中是中的最大数,,求的通项公式。
(本小题12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的大小;
(III)求点E到平面ACD的距离。
已知直线y=x+1与椭圆(m>n>0)相交于A,B两点,若弦AB的中点的横坐标等于,则双曲线的两条渐近线的夹角的正切值等于_______.
已知实数x、y满足,则Z=x+y的取值范围是 .
一个正四棱柱的各个顶点在一个直径为2cm的球面上。如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为 cm2.