(本题满分14分)已知函数f (x) = ax+ -3ln x.
(1) 当a = 2时,求f (x) 的最小值;
(2) 若f (x)在[1,e]上为单调函数,求实数a的取值范围.
(本题满分14分)如图,设抛物线()的准线与轴交于,焦点为,以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.
(1)当时,求椭圆的方程;
(2)在(1)的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;
(3)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
(本题满分14分)根据如图所示的程序框图,将输出的值依次分别记为;.
(1)求数列的通项公式;
(2)写出,由此猜想出数列;的一个通项公式,并证明你的结论;
(3)求.
(本题满分14分)如图,点P在正方形ABCD所在的平面外,PD⊥面ABCD,∠PAD=45°,空间一点E在平面ABCD上的射影是点B,且PB⊥面AEC.
(1)求直线AD与平面AEC所成的角的正切值;
(2)若F是AP的中点,求直线BF与CE所成角.
(本题满分12分)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:
福娃名称 |
贝贝 |
晶晶 |
欢欢 |
迎迎 |
妮妮 |
数量 |
1 |
1 |
1 |
2 |
3 |
从中随机地选取5只.
(1)求选取的5只恰好组成完整“奥运吉祥物”的概率;
(2)若完整地选取奥运会吉祥物记10分,若选出的5只中仅差一种记8分,差两种记6分,以此类推. 设ξ表示所得的分数,求ξ的分布列及数学期望.
(本题满分12分)如图,已知点点为坐标原点,点在第二象限,且,记.
(1)求的值;
(2)若,求的面积.