命题:,,则 ( )
A.是假命题,:
B.是假命题,:
C.是真命题,:
D.是真命题,:
一个各项均为正数的等比数列,其任何项都等于后面两项的和,则其公比
是 ( )
A. B. C. D.
若,其中都是实数,是虚数单位,则等于 ( )
A. B. C. D.
已知集合,则下列结论正确的是 ( )
A. B.
C. D.
(14分)已知数列的前和为,且满足。
(1)问:数列是否为等差数列?并证明你的结论;
(2)求;
(3)求证:。
(12分)已知椭圆的中心是坐标原点,它的短轴长为,一个焦点为,一个定点为,且,过点的直线与椭圆相交于两点。(1)求椭圆的方程和离心率;(2)若以为直径的圆恰好过坐标原点,求直线的方程。